Jinsi binadamu atashinda Mars na zaidi

How humans will conquer Mars and beyond


Powered by Guardian.co.ukMakala hii yenye jina “Jinsi binadamu atashinda Mars na zaidi” iliandikwa na Kevin Fong, kwa Observer Jumapili Desemba 13 2015 08.30 UTC

mwaka huu Royal Taasisi ya Krismasi Mihadhara tuangalie changamoto ya ndege nafasi za binadamu na nini inachukua vurumiza binadamu katika frontier ya mwisho juu ya safari ya utafutaji.

Kama daktari mimi alitumia zaidi ya muongo mmoja wa kusafiri na kurudi kati ya Uingereza na nasa Johnson Space Center katika Houston, kufanya kazi kama mtafiti kutembelea katika miradi kuanzia kusoma madhara ya mazingira nafasi kwenye kuzeeka physiology na mifumo bandia mvuto. Wakati huo huo mimi nilikuwa kumaliza mafunzo yangu junior matibabu katika anesthesia na wagonjwa mahututi. Ni isiyo ya kawaida kujaribu ganga maisha hayo mawili pamoja. Kazi kwenye chumba cha wagonjwa mahututi mara moja, viongozi na uwanja wa ndege mwishoni mwa mabadiliko, grabbing baadhi usingizi kwenye ndege, na kisha kuwasili siku ya pili katika chumba cha mkutano katika Houston, ambapo watu walikuwa wamekaa kuzunguka kuzungumza juu ya jinsi ya kutuma watu salama kwa Mars.

Lakini jambo lile wanaohusishwa mbili ilikuwa ni changamoto ya maisha katika extremes. Katika hospitali Nilikuwa kuangalia extremes ya maisha aliposimamishwa na magonjwa na majeraha. Wakati nasa Nilikuwa kuangalia tishio kwa fiziolojia ya binadamu na maajabu ya ulimwengu wa kimwili na ulimwengu.

Tunapozungumzia kuhusu mazingira uliokithiri tunaweza kupata wazo mbaya ya ukali wao kwa kuhukumu kwa muda gani wao utasaidia maisha ya binadamu bila kinga na haikubaliki. By kwamba nafasi kipimo ni uliokithiri mwisho: kipekee maadui fiziolojia ya binadamu, inatoa hakuna msaada kwa ajili ya maisha ya binadamu yo. zembe nafasi msafiri bila kuishi katika mazingira ambayo tu kwa sekunde chache.

Unaweza kufikiria kwamba kutakuwa na mengi ya daktari kufanya - kwamba linapokuja suala la nafasi ya utafutaji wa binadamu, watu ambao kuelewa na unaweza kuendesha fiziolojia ya binadamu itakuwa mstari wa mbele katika juhudi kwamba. Lakini madaktari kucheza maskini Fiddle ya pili kwa nini ni mzigo utamaduni wa uhandisi - na kwa sababu nzuri.

Nafasi ya ndege ni katika kanuni ya kimwili disarmingly rahisi. Hivyo rahisi katika ukweli kwamba Newton walikuwa wameanza kuelewa mienendo ili kuimarisha ni karibu 400 miaka iliyopita. Kuondoka duniani na kuingia obiti kuzunguka, wewe kwanza haja ya kutupa kitu duniani kote kwa bidii kuwa trajectory yake hadi zaidi ya upeo dunia - kwa bidii kuwa inaweza kuwa na kuanguka katika namna ambayo kamwe tena anaona ardhi.

Na hivyo kwa kuweka kitu ndani ya mhimili kote duniani una kutoa ni pamoja na kiasi kikubwa cha nishati. Katika suala pana kasi ya kwenda pana radius ya obiti kufikia; kupata gari ili kufikia obiti upana wa kutosha ili kupata miss wote wawili Dunia na tabaka ya juu ya anga, kuwawekeni katika urefu sawa na International Space Station baadhi 250 maili juu yetu, unahitaji kusafiri karibu 17,500mph.

Ambayo inahitaji gari drivs na injini na matanki ya mafuta na uwezo wa mlipuko wa silaha ndogo za nyuklia. safari hii, from the surface of the Earth into low Earth orbit – aboard the Soyuz spacecraft – takes a little over eight minutes. And so the reason that the culture at Nasa, and space agencies across the world, is so firmly rooted in the demands of engineering rather than those of human biology is because in that brief but violent period there is almost nothing modern medicine can offer in the way of protection. During launch, either the engineering works and everyone lives, or it doesn’t and everyone perishes.

The preservation of human life throughout launch depends not upon medical procedures but on concentric layers of artificial protection that engineers design and build and swaddle the astronaut crews in.

The rocket engines must fire perfectly, delivering just the right thrust at just the right time, directed in precisely the right way. The tremendous force of that propulsion mustn’t be allowed to shake the vehicle, its systems or its fragile cargo of passengers apart. It is the job of engineering teams to make sure that the launcher and the vehicle are designed to perform in the face of forces that are trying to destroy them.

And perched atop that tower of kerosene and oxygen is a tiny capsule, with the volume of a handful of telephone boxes, and a couple of tonnes of supplies and three passengers crammed in among them. That capsule is a tiny bubble of life support, pinched off from the Earth and maintained artificially. Ndani, still more machines provide a breathable atmosphere with enough pressure and warmth to support life in the void of space. If you survive the launch, your problems are really only just beginning.

chris hadfield on the iss
High table: Chris Hadfield eating in zero gravity aboard the International Space Station. Picha: Nasa

International Space Station

It’s tempting to think of the International Space Station as a hi‑tech Big Brother house, floating high above the Earth. In some senses that is true: living conditions are harsh by any normal standard. There are few creature comforts and precious little privacy. It is a living arrangement bristling with the potential for huge social conflict. But remarkably that is largely avoided and in 15 years of operation there have been no evictions.

But the ISS is much more than an accommodation block. When crews go to live there they are taking up residence inside a machine upon which their lives depend every second of the day. They electrolyse water to produce oxygen, employ molecular sieves to scrub waste gases out of the air that they breathe, run heating systems from vast solar arrays that can pump out 80kW of power. That solar energy also drives four huge gyroscopes, which steady and steer the station, preventing it from tumbling out of control.

The International Space Station is far from tranquil: it hums and whines perpetually; fans are running all the time. Without gravity hot air doesn’t rise and cold air doesn’t sink. Kuna, as a consequence, no convection and without that it’s hard to get air to move or mix. That in turn causes problems, leaving astronauts prone to headaches in poorly ventilated areas, where exhaled carbon dioxide can build up. Hence the constant drum of motors churning air. The draughts on the ISS, like almost everything else that the crews depend upon for healthy living, are artificial. All of this effort just to maintain that bubble of life support in an outpost just 250 miles above our heads. The challenges involved are legion and we haven’t even started to talk about leaving low Earth orbit yet.

Back to the moon

There is unfinished business on the moon. It is nearly half a century since the Apollo programme landed a dozen men on its surface. And while it represents a treasure trove of scientific discovery, nobody has been back since. Low Earth orbit is 250 miles away and can be reached in minutes. The moon is about 250,000 maili, takes days to get to and, in addition to isolation and the added complexity of the rocket science required, leaves crews extremely vulnerable to radiation. On Earth we’re protected from some types of radiation by the thick blanket of atmosphere above, which absorbs gamma rays, x-rays and ultraviolet radiation that would otherwise be harmful. But there’s another layer of protection that also keeps us safe: Earth’s magnetic field.

The magnetosphere filters out a particularly harmful species of radiation, which comes in the form of charged, high-energy particles – atomic nuclei spat out as a by-product of thermonuclear reactions in stars including our own. This type of radiation is particularly harmful and, during solar flares, can increase in intensity by many thousands of times. Presently we have little in the way of effective protection from the radiation that comes with the worst solar flares.

Mars and beyond

In recent years the idea of putting human crews on the surface of something other than the moon or Mars has found its way into the strategy documents of the international space agencies. This mission is less science fiction than you might think. The European Space Agenecy’s Rosetta mission, which so spectacularly landed the Philae lander on the surface of a comet last year, showed us that we could find and intercept a tiny target hurtling through space hundreds of billions of miles away. This has given agencies confidence that their idea of landing a human crew on an asteroid might be realisable.

But for now it is Mars that lies at the edge of possibility, and surviving that journey presents a challenge on a different scale. With Mars, the problem is distance and time. To get to the red planet you have to traverse hundreds of millions of interplanetary miles; zaidi ya 1,000 times the distance Apollo crews travelled to the moon. With existing technology it would take between six and nine months to travel from Earth to Mars and the same again on the return leg.

That’s a lot of time spent without any gravitational load on your body. Weightlessness may look like fun, but like everything else, too much of it can be a bad thing. When physiologists first considered what effect the space environment might have on the human body, before anybody had even been into space, they correctly predicted that muscle and bone would waste. Those systems are sculpted by gravity and as anyone who has ever so much as looked at a gym knows, if you don’t use it you lose it. Kwa sababu ya hili, crews aboard the International Space Station must subject themselves to a daily programme of resistive exercise to try and prevent some of that bone and muscle loss.

the surface of mars
Was there life on Mars? Dark streaks on the planet’s surface which seem to indicate the presence of flowing water. Picha: Nasa/Reuters

Weightlessness wreaks havoc with other systems. It upsets your senses of balance and co-ordination, making it more difficult for crew members to track moving targets, creating illusions of motion and, for the first few days of flight, generally making them feel pretty queasy. With the exception of the nausea, all of these problems tend to get worse the longer you spend weightless.

hivi karibuni zaidi, new – and potentially more worrying – problems have cropped up. For reasons that are not yet entirely clear the pressure in some astronauts’ brains appears to rise as a consequence of space flight, and this has been linked to alterations in their eyesight that sometimes persist for many years after their return to Earth. This phenomenon has only been noticed after long duration missions, which highlights the message: spending a lot of time in space isn’t great for your health.

But time also creates problems for life support systems. If you imagine the amount of food, maji, oxygen and power a single person might consume in a mission set to last up to three years (if you include the surface stay), that demands quite a sizable larder. Now multiply that by a crew of four or six and it looks like you need an impossibly huge spacecraft just to keep you fed and watered.

And that does become impossible unless you are able to recycle and reuse everything you can. Already aboard the space station astronauts recycle most of their waste water, including their urine. They scrub carbon dioxide out of their exhaled air and rebreathe the remaining oxygen. You might be able to go further still, by growing crops hydroponically, as a source of food and a mechanism of removing carbon dioxide and renewing the oxygen supply. If you choose the right plants you might even recycle the nitrogen in human solid waste. Which of course is a scientific way of saying that maybe you could use your own poo to fertilise your life-supporting crops.

A system as sophisticated as that is extremely difficult to assemble, manage and maintain, and it’s likely to be a while before we see greenhouses flying through deep space. For now life support engineers will content themselves with finding ways to recycle more and more of the resources they can, and in so doing reducing the amount of payload that crews have to set aside for the things that keep them alive.

There is a simple lesson from all of this: space is hard. All frontier endeavours are. But there is plenty to celebrate here. Since the start of the 21st century there has been a permanent human presence in space. What started as a surrogate battlefield for nuclear war has become a multinational programme of science, exploration and collaboration. This is not the place to get into a discussion of why we should explore space at all. There are many benefits that derive from human space exploration but one is more important than all the rest. Human space exploration inspires children to study and pursue careers in science, technology and engineering. It does so by showing them that within the limits of human imagination anything might be possible. I know this because it inspired me and throughout the whole of my life has continued to hold my fascination.

It is an enormous honour to give the Royal Institution’s Christmas Lectures. And yes, the take-home message is that space is hard. But the real lesson for this year’s audience is that this has been my adventure and it can be yours too.

How to Survive in Space will be shown on BBC4 in three parts on 28, 29 na 30 December at 8pm. Find out more on the Royal Institution’s website and join the conversation on Twitter and Instagram by following @ri_science or searching for #xmaslectures

guardian.co.uk © Guardian Habari & Media Limited 2010

Kuchapishwa kupitia Guardian News Feed Plugin kwa WordPress.

28591 0